Home
Class 12
MATHS
If A^(n) = 0, then evaluate (i) I+A+A^(...

If `A^(n) = 0`, then evaluate
(i) `I+A+A^(2)+A^(3)+…+A^(n-1)`
(ii)`I-A + A^(2) - A^(3) +... + (-1) A^(n-1)` for odd 'n' where I is the identity matrix having the same
order of A.

Text Solution

Verified by Experts

(i) `A^(n) = 0 rArr A^(n) - I = -I`
`rArr A^(n) - I ^(n) = -I rArr I^(n) -A^(n) =I`
`rArr (I-A) (I + A+A^(2)+A^(3)+... + A^(n-1) ) = I`
`rArr (I+A+A^(2) +A^(3) +... + A^(n-1) )`
`= (I-A)^(-1) I = (I-A) ^(-1)`
(ii) `A^(n) = 0 rArr A^(n) + I = I`
`rArr A^(n) + I^(n) = I`
`rArr I^(n) + A^(n) = I`
`rArr (I+A) (I-A+A^(2) - A^(3) +...+ A^(n-1) )=I`
[`because` n is odd]
`rArr I-A+A^(2) - A^(3) +...+ A^(n-1) `
`=(I+A)^(-1) I = (I+A)^(-1)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Matrix A such that A^(2)=2A-I , where I is the identity matrix, then for n ge 2, A^(n) is equal to

Evaluate. (i) i^(1998) (ii) i^(-9999) (iii) (-sqrt-1)^(4n-3) ,n ne N

Let A = [[0,1],[0,0]] , show that (aI + bA)^n = a^nI + na^(n-1) bA , where I is the identity matrix of order 2 and n in N

Find the value of (3^n × 3^(2n + 1))/(3^(2n) × 3^(n - 1))

Let A and B be matrices of order n. Prove that if (I - AB) is invertible, (I - BA) is also invertible and (I-BA)^(-1) = I + B (I- AB)^(-1)A, where I be the identity matrix of order n.

If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an identity matrix, prove theat det (M-I)=0.

If i^2=-1 , then the value of overset (200) underset (n=1) (sum) i^n is :

If n is an odd integer greater than or equal to 1, then the value of n^3 - (n-1)^3 + (n-2)^3 - (n-3)^3 + .... + (-1)^(n-1) 1^3

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. If m = 2 and n = 5 then p equals to

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If A^(n) = 0, then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii)I-A ...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. Evluate int 3x^2 dx

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose are ether 0 or 1 and for which t...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let p be an odd prime number and T(P) be the following set of 2xx2 m...

    Text Solution

    |