Home
Class 12
MATHS
Let, C(k) = ""^(n)C(k) " for" 0 le kle n...

Let, `C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]]` for
`k ge l and `
`A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]]`, then

A

`k_(1) = K_(2)`

B

`k_(1) + k_(2) = 2`

C

`k_(1) = ""^(2n)C_(n)-1`

D

`k_(2) = ""^(2n)C_(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`A_(1) + A_(2) + A_(3) +... + A_(n) = [[C_(0)^(2),0],[0,C_(1)^(2)]]+ [[C_(1)^(2),0],[0, C_(2)^(2)]]`
`+ [[C_(2)^(2),0],[0,C_(3)^(2)]]+...+ [[C_(n-1)^(2),0],[0, C_(n)^(2)]]`
` = [[C_(0)^(2)+C_(1)^(2) + C_(2)^(2)+...+C_(n-1)^(2),0],[0,C_(1)^(2)+C_(2)^(2)+C_(2)^(3)+...+C_(n)^(2)]]`
`[[""^(2n)C_(n)-1,0],[0,""^(2n)C_(n)-1]] =[[k_(1),0],[0,k_(2)]]` [given ]
`therefore k_(1) = k_(2) =""^(2n) C_(n)-1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(0),a_(1) " and " a_(2) are in A.P , the value of n is

Let S_(n)=sum_(k=1)^(n)n/(n^(2)+kn+k^(2)) and T_(n)=sum_(k=0)^(n-1)n/(n^(2)+kn+k^(2)) for n=1,2,3, ………. Then

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

lim_(n rarr infty) sum_(k=1)^(n) (k)/(n^(2)+k^(2)),x gt 0 is equal to

If A = [[k,0],[1,1]] ,B = [[1,0],[0,1]] ,find k of A^2 = B

If the function f(x) is defined as : f(x) =a_(0) +a_(1)x^(2)+…..+ a_(10)x^(20) where 0 lt a_(0) lt …. < a_(10) . Then f(x) has in RR :

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)