Home
Class 12
MATHS
Let A= [[a,b,c],[b,c,a],[c,a,b]] is an o...

Let `A= [[a,b,c],[b,c,a],[c,a,b]]` is an orthogonal matrix and `abc = lambda (lt0).`
The value ` a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2)`, is

A

`2lambda`

B

`-2lambda`

C

`lambda^(2)`

D

`-lambda`

Text Solution

Verified by Experts

The correct Answer is:
B

`becauseA` is an orthogonal matrix
`therefore A A^(T) =I`
`[[a,b,c],[b,c,a],[c,a,b]] [[a,b,c],[b,c,a],[c,a,b]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
`[[a^(2)+b^(2)+c^(2),ab + bc+ca,ab + bc+ ca],[ab + bc + ca,a^(2) +b^(2)+c^(2) , ab+ bc+ ca ],[ab+ bc+ca,ab+bc+ca,a^(2) + b^(2) + c^(2)]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
By equality of matrices, we get
`a^(2) + b^(2) +c^(2) = 1 ` ...(i)
`ab + bc + ca= 0` ...(ii)
` (a+b+c)^(2) + a^(2)= b^(2) +c^(2)+ 2 (ab + bc + ca)`
`= 1 + 0 = 1`
` therefore a+ b + c = pm 1` ...(iii)
`because a^(2) b^(2) + b^(2) a^(2) + c^(2) a^(2) = (ab + bc+ ca) ^(2) - 2abc (a + b + c)`
`= 0- 2abc (pm 1) pm 2 lambda [ because abc = lambda ]`
` = - 2 lambda ` `[because lambda lt 0]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Let A= [[a,b,c],[b,c,a],[c,a,b]] then find tranpose of A matrix

If a+b+c=0, then what is the value of a^2/(bc)+b^2/(ca)+c^2/(ab)

Verify (a + b + c) (a ^(2) +b ^(2) + c ^(2) - ab - b c - ca) = a ^(3) + b ^(2) + c ^(2) - 3 abc

The value of the det. |[2,a,abc],[2,b,bca],[2,c,cab]| is

Using factor theorem, show that a - b is the factor of a(b^2 -c^2)+ b(c^2 -a^2)+ c(a^2 - b^2) .

In any triangle ABC, prove that : (c^2-a^2+b^2) tan A= (a^2-b^2+ c^2) tan B= (b^2-c^2+a^2) tan C .

If [a b c]=2 , then find the value of [(a+2b-c)(a-b)(a-b-c)] .

If the integers a,b,c,d are in arithmetic progression and a lt b lt c lt d and d=a^(2)+b^(2)+c^(2) , the value of (a+10b+100c+1000d) is

If in triangle ABC, a, c and angle A are given and c sin A lt a lt c , then ( b_(1) and b_(2) are values of b)

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is