Home
Class 12
MATHS
If the matrix A = [[lambda(1)^(2), lambd...

If the matrix `A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]` is idempotent,
the value of `lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2)` is

Text Solution

Verified by Experts

The correct Answer is:
1

`because A^(2) = Acdot A = [[lambda_(1)^(2), lambda_(1) lambda_(2), lambda_(1) lambda_(3) ],[lambda_(2)lambda_(1), lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] [[lambda_(1)^(2), lambda_(1) lambda_(2), lambda_(1) lambda_(3) ],[lambda_(2)lambda_(1), lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]`
` = [[lambda_(1)^(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(1) lambda_(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(1) lambda_(3)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)) ],[lambda_(2)lambda_(1)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(2)^(2) (lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(2)lambda_(3)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2))],[lambda_(3)lambda_(1)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(3)lambda_(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(3)^(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2))]]`
`= (lambda_(1)^(2) + lambda_(2)^(2) + lambda_(3)^(2) ) A`
Given, A is idempotent
`rArr A^(2) = A`
`= lambda_(1)^(2) + lambda_(2)^(2) + lambda_(3)^(2) = 1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Let plambda^(4)+qlambda^(3)+rlambda^(2) + slambda+t= |{:(lambda^(2)+3lambda,,lambda-1,,lambda+3),(lambda+1 ,,-2lambda,,lambda-4),(lambda-3,,lambda+4,,3lambda):}| be an indentity in lambda p,q, r s and r are constants. Then find the value of t.

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

If sum_(i=1)^(n)a_(i)^(2)=lambda, AAa_(i)ge0 and if greatest and least values of (sum_(i=1)^(n)a_(i))^(2) are lambda_(1) and lambda_(2) respectively, then (lambda_(1)-lambda_(2)) is

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are in

If (1)/(cos 290^(@))+(1)/(sqrt(3)sin 250^(@))=lambda , then the value of 9 lambda^(4)+81 lambda^(2)+97 must be

if A=[(1,2),(2,3)] and A^(2) -lambdaA-l_(2)=O, then lambda is equal to

Find the value of lambda the equation is 2x+3y+lambda where x=2 and y=1

If lambda in R , then lambdaI_2 is the matrix

If (-2,7) is the highest point on the graph of y =-2x^2-4ax +lambda , then lambda equals