Home
Class 12
MATHS
Statement-1 (Assertion and Statement- 2 ...

Statement-1 (Assertion and Statement- 2 (Reason)
Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below.
Statement-1 For a singular matrix `A , if AB = AC rArr B = C`
Statement-2 If `abs(A) = 0,` thhen` A^(-1)` does not exist.
a. Statement- is true, Statement -2 is true, Statement-2
is a correct explanation for Statement-1
b. Statement-1 is true, Statement-2 is true, Sttatement - 2
is not a correct explanation for Stamtement-1
c. Statement 1 is true, Statement - 2 is false
d. Statement-1 is false, Statement-2 is true

A

Statement- is true, Statement -2 is true, Statement-2
is a correct explanation for Statement-1

B

Statement-1 is true, Statement-2 is true, Sttatement - 2
is not a correct explanation for Stamtement-1

C

Statement 1 is true, Statement - 2 is false

D

Statement-1 is false, Statement-2 is true

Text Solution

Verified by Experts

The correct Answer is:
D

`A^(-1) ` exists only for non-singular matrix
`AB= AC rArr A^(-1) (AB) = A^(-1) (AC) `
`rArr (A^(-1) A ) B= (A^(-1)A) C`
`rArr IB = IC`
`rArr B= C, ` if `A^(-1)` exist
`therefore abs(A) ne 0`
Statement- 2 is false and Statement-2 is true.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Statement -1 (Assertion) and Statement - 2 (Reason) Each of these examples also has four alternative choices, ONLY ONE of which is the correct answer. You have to select the correct choice as given below Statement-1 A is singular matrox pf order nxxn, then adj A is singular. Statement -2 abs(adj A) = abs(A)^(n-1)

Statement -1 (1/2)^7lt(1/3)^4 implies 7log(1/2)lt4log(1/3)implies7lt4 Statement-2 If axltay , where alt0 ,x, ygt0 , then xgty . (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true.

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 log_x3.log_(x//9)3=log_81(3) has a solution. Statement-2 Change of base in logarithms is possible .

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 The equation 7^(log_7(x^3+1))-x^2=1 has two distinct real roots . Statement -2 a^(log_aN)=N , where agt0 , ane1 and Ngt0

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 log_10xltlog_3xltlog_exltlog_2x (xgt0,xne1) Statment If 0ltxlt1 , then log_xagtlog_xbimplies0ltaltb .

Statement-1 (Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement-1 if A and B are two square matrices of order nxxn which satisfy AB= A and BA = B, then (A+B) ^(7) = 2^(6) (A+B) Statement- 2 A and B are unit matrices.

Statement-1(Assertion) and Statement-2 (reason) Each of these question also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true Statement -1 The equation (logx)^2+logx^2-3=0 has two distinct solutions. Statement-2 logx^(2) =2logx.

Statement-1 (Assertion) and Statement-2 (Reason) Each of the these examples also has four alternative choices , only one of which is the correct answer. You have to select the correct choice as given below . Number of distinct terms in the sum of expansion (1 + ax)^(10)+ (1-ax)^(10) is 22.

Statement-1 (Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement - 1 If A is skew-symnmetric matrix of order 3, then its determinant should be zero. Statement - 2 If A is square matrix, det (A) = det (A') = det (-A')

Statement-1 If a set A has n elements, then the number of binary relations on A = n^(n^(2)) . Statement-2 Number of possible relations from A to A = 2^(n^(2)) . (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 (b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1 (c) Statement-1 is true, Statement-2 is false (d) Statement-1 is false, Statement-2 is true