Home
Class 12
MATHS
If A= [[1,-1,-1],[1,-1,0],[1,0,-1]] then...

If `A= [[1,-1,-1],[1,-1,0],[1,0,-1]]` then find transpose of A

Text Solution

Verified by Experts

The correct Answer is:
D

`therefore det (A - lambdaI) = [[1-lambda,-1,-1],[1,-1-lambda,0],[1,0,-1-lambda]]=0`
`rArr (1-lambda ) (1+lambda)^(2) - 1-lambda -1 -lambda = 0`
`rArr lambda^(3) + lambda^(2) + lambda + 1= 0`
` rArr A^(3) + A^(2) + A + I = 0`
`rArr A^(3) + A^(2) + A= -I`
Statement -1 is false but Statement -2 is true.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A = [[0 , 1, -1],[4, -3, 4],[3, -3, 4]] find the transpose of A matrix

If A = [[2,0,1],[2,1,3],[1,-1,0]] then find A^2-5A+6I .

If A = [[2,0,1],[2,1,3],[1,1,0]] then find A^2-2A+5I .

If A = [[2,0,1],[2,-1,3],[1,1,0]] then find A^2-3A+2I .

If A= [[2,0,1],[2,1,3],[1,-1,0]] , find A^2-5A+6I=O

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If A = [[k,0],[1,1]] ,B = [[1,0],[0,1]] ,find k of A^2 = B

Show that the matrix A = [[0,1,-1],[-1,0,1],[1,-1,0]] is a skew symmetric matrix.