Home
Class 12
MATHS
If A=[[cos alpha, -sin alpha] , [sin alp...

If `A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta, sin 2beta] , [sin 2 beta, -cos2beta]]` where `0 lt beta lt pi/2` then prove that `BAB=A^(-1)` Also find the least positive value of `alpha` for which `BA^4B= A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`alpha =(2pi)/3`

`because BAB=A^(-1)`
`rArr ABAB= I`
`rArr (AB)^(2) = I`
Now, `AB= [[cos (alpha+2beta),sin (alpha+2beta)],[sin(alpha+2beta),-cos(alpha + 2beta)]]`
and `(AB)^(2) = (AB) (AB) = [[1,0],[0,1]]= I [because (AB)(AB)=I]`
Also, `BA^(4)B=A^(-1)`
or `A^(4) B= B^(-1) A^(-1) =(AB)^(-1) = AB`
or`A^(4) = A " "...(i)`
Now, `A^(2) = [[cos alpha,-sin alpha],[sin alpha,cos alpha]][[cos alpha,-sin alpha],[sin alpha,cos alpha]]`
`=[[cos 2alpha,-sin 2alpha],[sin 2alpha,cos 2alpha]]`
Similarly, `A^(4)=[[cos 4alpha,-sin 4alpha],[sin 4alpha,cos4alpha]]`
Hence, from Eq. (i)
`[[cos 4alpha,-sin 4alpha],[sin 4alpha,cos4alpha]]=[[cos alpha,-sin alpha],[sin alpha,cos alpha]]`
or `4 alpha = 2pi + alpha`
` therefore alpha = (2pi)/3`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A = [(cos alpha, sin alpha),(sin alpha, cos alpha)] and B = [(cos beta, sin beta),(sin beta, cos beta)] show that AB = BA

If F(alpha)=[[cos alpha,-sin alpha, 0],[sin alpha, cos alpha, 0],[0,0,1]] , then show that F(alpha) F (beta)= F(alpha + beta) .

Using vectors, prove that sin (alpha+beta)=sin alpha cos beta+ cos alpha sin beta .

Using vectors prove that sin(alpha - beta) = sin alpha cos beta- cos alpha sin beta .

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

A_(alpha )= [(cos alpha, sin alpha),(- sin alpha, cos alpha)] then prove that A_(alpha . A_(beta) = A_(alpha + beta)

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is

Prove by vectors that : cos (alpha + beta) = cos alpha cos beta- sin alpha sin beta .

Prove by vectors that : cos (alpha - beta) = cos alpha cos beta+ sin alpha sin beta .

If sin alpha+sinbeta=l, cos alpha+ cos beta= m and tan(alpha/2)tan(beta/2)=n(!= 1) , then