Home
Class 12
MATHS
A=[(a,1,0),(1,b,d),(1,b,c)] then find th...

`A=[(a,1,0),(1,b,d),(1,b,c)]` then find the value of |A|

Text Solution

Verified by Experts

AX =U has infiinite many solutions
`rArr abs(A) = 0 = abs(A_(1))= abs(A_(2))=abs(A_(3))`
Now, `abs(A) = 0 `
`rArr abs((a,1,0),(1,b,d),(1,b,c)) = 0 rArr (ab-1)(c-d)=0`
`rArr ab = 1 or c=d" "...(i)`
and `abs(A_(1))=0`
`rArr [[f,1,0],[g,b,d],[h,b,c]]=0`
`rArr fb(c-d) - gc + hd = 0`
`rArr fb(c-d)=gc-hd` ...(i)
`rArr abs(A_(2))=0`
`rArr abs((a,f,0),(1,g,d),(1,h,c)) = 0`
`rArra (gc-dh)-f(c-d)=0`
` rArr a(gc-dh)=f(c-d)` ...(iii)
`abs(A_(3))=0`
`rArr [[a,1,f],[1,b,g],[1,h,c]]=0`
`rArr (h-g)(ab-1)=0`
`rArr h=g or ab =1 ` ...(iv)
Taking `c= d rArr h = g and ab ne 1` (from Eqs. (i). (ii) and (iv))
Now, thaing `BX=V,`
Then, `abs(B) = abs((a,1,1),(0,b,c),(f,g,h))=0`
[`because` In view of c = d and g = h, `c_(2) and c_(3)` are identical]
`rArr BX=V` has no unique solution.
and `abs(B_(1))=abs((a^(2),1,1),(0,d,c),(0,g,h))=0 " "[because c= d, g= h]`
`abs(B_(2))=abs((a,a^(2),1),(0,0,c),(f,0,h))=a^(2)fc =a^(2)df " " [because c=d]`
and `abs(B_(3))=abs((a,1,a^(2)),(0,d,0),(f,g,0))=-a^(2)df `
If `a^(2)df ne 0, ` then `abs(B_(2)) = abs(B_(3))ne 0` Hence, on solution exist.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3).

If the origin is the centroid of triangle ABC, with vertices A(a,1,3), B(-2,b,-5) and C(4,7,c). Find the values of a,b and c.

If ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}| =0 the value of |a^(-1)+b^(-1)+c^(-1)| is equal to

If a,b and c are three consecutive positive integers such that 1/(a!)+1/(b!)=lambda/(c!) then find the value of root under lambda .

If A = {:[(4),(2),(3)] and B = [1 0 2], the find the value of AB.

Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

Consider the matrices : A = {:[(1,-2),(-1,3)] and B = [(a,b),(c,d)] . If AB = {:[(2,9),(5,6)] , find the values of a,b,c and d.

If A = {:[(1,-3,2),(2,0,2)], B = [(2,-1,-1),(1,0,-1)] , find the matrix C such that A +B + C is a zero matrix.

If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2)) then find the values of a and b.

Matrices A and B Satisfy AB = B^(-1) , where B =[{:(2,-2),(-1,0):}] , find the value of lambda for which lambdaA - 2B^(-1) + 1=O , Without finding B^(-1) .