Home
Class 12
MATHS
Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1...

Let `z=(-1+sqrt(3)i)/(2)`, where `i=sqrt(-1)`, and `r, s in {1, 2, 3}`. Let `P=[((-z)^(r),z^(2s)),(z^(2s),z^(r))]` and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which `P^(2)=-I` is ______.

A

`1/2 abs(a-b)`

B

`1/2 abs(a+b)`

C

` abs(a-b)`

D

` abs(a+b)`

Text Solution

Verified by Experts

The correct Answer is:
A

`because Z = (-1+ sqrt(3)i)/2 = omega`
` rArr omega = 1 and 1 + omega + omega ^(2) = 0 `
Now, `P = [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]]`
`therefore P^(2) = [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]] [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]]`
` =[[omega^(2r)+omega^(4s),omega^(2s)((-omega)^(r)+omega^(r))],[omega^(2s)((-omega)^(r)+omega^(r)), omega^(4s)+omega^(2r)]]`
` =[[omega^(2r)+omega^(4s),omega^(2s)((-omega)^(r)+omega^(r))],[omega^(2s)((-omega)^(r)+omega^(s)), omega^(s)+omega^(2r)]] " " (because omega^(3) = r)`
`because P^(2) = -I= [[-1,0],[0,-1]]` ...(ii)
Form Eqs. (i) and (ii), we get
`omega^(2r) +omega^(s)=-1`
and ` omega^(2s) ((-omega)^(r)+omega^(r))=0`
`rArr r` is odd and `s = r` but not a multiple of 3, Which is possible
`therefore ` only one pair is there.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z=(i) ^((i) ^(i)) where i= sqrt (−1) ​ , then z is equal to

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

Let z=9+ai, where i=sqrt(-1) and a be non-zero real. If Im(z^(2))=Im(z^(3)) , sum of the digits of a^(2) is

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Find the value of Im(z) .

If z=x+iy, where i=sqrt(-1) , then the equation abs(((2z-i)/(z+1)))=m represents a circle, then m can be

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)z_i^(3) is

If the equation z^(3)+(3+i)z^(2)-3z-(m+i)=0, " where " i=sqrt(-1) " and " m in R , has atleast one real root, value of m is

Find the difference of the complex numbers : z_1=- 3 + 2i and z_2= 13-i .

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  2. Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) a...

    Text Solution

    |

  3. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  4. If P is a 3xx3 matrix such that P^T = 2P+I, where P^T is the transpose...

    Text Solution

    |

  5. If the adjoint of a 3x3 matrix P is (1 4 4) (2 1 7) (1 1 3) , t...

    Text Solution

    |

  6. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  7. Let P and Q be 3xx3 matrices P ne Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P,...

    Text Solution

    |

  8. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  9. For 3xx3 matrices M \ a n d \ N , which of the following statement (s)...

    Text Solution

    |

  10. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  11. If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A...

    Text Solution

    |

  12. Let M be a 2xx2 symmetric matrix with integer entries. Then , M is i...

    Text Solution

    |

  13. Let M and N be two 3xx3 matrices such that MN=NM. Further, if M ne N^(...

    Text Solution

    |

  14. If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisying the equation A A...

    Text Solution

    |

  15. Let X \ a n d \ Y be two arbitrary, 3xx3 , non-zero, skew-symmetric ma...

    Text Solution

    |

  16. If A=[(5a,-b),(3,2)] and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  17. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  18. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  19. Let P=[(1,0,0),(3,1,0),(9,3,1)] and Q = [q(ij)] be two 3xx3 matrices s...

    Text Solution

    |

  20. If A=[(2,-3),(-4,1)], then adj (3A^(2)+12 A) is equal to

    Text Solution

    |