Home
Class 12
MATHS
Consider the function f(x)={{:(x-[x]-(1)...

Consider the function `f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):}` where [.] denotes the fractional integral function and I is the set of integers. Then find `g(x)max.[x^(2),f(x),|x|},-2lexle2.`

A

`x^(2),-2le x le-1`

B

`1-x, -1 lt x le-(1)/(4)`

C

`(1)/(2)+x, -(1)/(4)lt x lt0`

D

`1+x, 0 le x lt1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|2 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|4 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|7 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|24 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

Find the domain of function f(x)= (1)/([abs(x-1)]+[abs(7-x)]-6) where [*] denotes the greatest integral function .

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x) = x [x], where [*] denotes the greatest integer function, when x is not an integer then find the value of f prime (x)

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is