Home
Class 12
MATHS
If (cos^(2)x + 1/(cos^(2) x)) (1+tan^(2)...

If `(cos^(2)x + 1/(cos^(2) x)) (1+tan^(2) 2y) (3+ sin 3z)=4`, then

A

x may be a multiple of pi

B

x cannot be an even number of `pi`

C

z can be a multiple of `pi`

D

y can be a multiple of `(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value x^(-2) + y^(-2) equals .

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = (pi)/6 , then ( 5 sin^(-1) x)/( sin^(-1) y) is

Find all number x , y that satisfy the equation (sin^2 x +(1)/( sin^(2) x))^(2)+( cos^(2)x+(1)/(cos^(2)x))^(2)=12+(1)/(2) siny.

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

Statement -1: If 2"sin"2x - "cos" 2x=1, x ne (2n+1) (pi)/(2), n in Z, "then sin" 2x + "cos" 2x = 5 Statement-2: "sin"2x + "cos"2x = (1+2"tan" x - "tan"^(2)x)/(1+"tan"^(2)x)

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The principal value of cos^(-1) (cos 5t^(2)) is

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to