Home
Class 12
MATHS
If |z|ge3, then determine the least valu...

If `|z|ge3,` then determine the least value of `|z+(1)/(z)|`.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

1. If |z-2+i| ≤ 2 then find the greatest and least value of | z|

If |z_(1) -1|le,|z_(2) -2| le2,|z_(3) - 3|le 3, then find the greatest value of |z_(1) + z_(2) + z_(3)|

If |z-4/z|=2 then the greatest value of |z| is:

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

If |z_(1)| = 1, |z_(2)| =2, |z_(3)|=3, and |9z_(1)z_(2) + 4z_(1)z_(3)+z_(2)z_(3)|= 12 , then find the value of |z_(1) + z_(2) + z_(3)| .

If |z|=1 and z!=1, then all the values of z/(1-z^2) lie on

If |z-i|le5andz_(1)=5+3i("where",i=sqrt(-1), the greatest and least values of |iz+z_(1)| are

Solve for the value of x : (2-z)/(z+16) = 3/5

If z_(1),z_(2) and z_(3), z_(4) are two pairs of conjugate complex numbers, the find the value of arg(z_(1)/z_(4)) + arg(z_(2)//z_(3)) .

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these