Home
Class 12
MATHS
If z1 and z2 are two complex number such...

If `z_1 and z_2` are two complex number such that `|(z_1-z_2)/(z_1+z_2)|=1`, Prove that `iz_1/z_2=k` where k is a real number Find the angle between the lines from the origin to the points `z_1 + z_2` and `z_1-z_2` in terms of k

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If z_1 and z_2 (ne 0) are two complex numbers, prove that : |z_1 z_2|= |z_1||z_2| .

If z_1, z_2 are two complex numbers satisfying the equation |(z_1 +z_2)/(z_1 -z_2)|=1 , then z_1/z_2 is a number which is :

If z_1a n dz_2 are two nonzero complex numbers such that |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to

If z_1 and z_2 (ne 0) are two complex numbers, prove that : |z_1/z_2|= (|z_1|)/ (|z_2|), z_2 ne 0 .

If z_1, z_2, z_3 are complex numbers such that |z_1|= |z_2|= |z_3| =|1/z_1+1/z_2+1/z_3|=1, |z_1+z_2+z_3| is :

The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

If two complex numbers z_1,z_2 are such that |z_1|= |z_2| , is it then necessary that z_1 = z_2 ?

For any two complex numbers z_1 and z_2 , prove that Re (z_1 z_2) = Re z_1 Re z_2 - Imz_1 Imz_2