Home
Class 12
MATHS
If |z(1)|=|z(2)|andamp(z(1))+amp(z(2))=0...

If `|z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0,` then

A

`z_(1)=z_(2)`

B

`barz_(1)=z_(2)`

C

`z_(1)+z_(2)=-0`

D

`barz_(1)=barz_(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise For Session 4|14 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then z 1 ​ +z 2 ​ is equal to

Consider z_(1)andz_(2) are two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| Statement -1 amp (z_(1))-amp(z_(2))=0 Statement -2 The complex numbers z_(1) and z_(2) are collinear. Check for the above statements.

If |z_(1)|=2,|z_(2)|=3,|z_(3)|=4and|z_(1)+z_(2)+z_(3)|=5. "then"|4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)| is

If |z_(1)| = 1, |z_(2)| =2, |z_(3)|=3, and |9z_(1)z_(2) + 4z_(1)z_(3)+z_(2)z_(3)|= 12 , then find the value of |z_(1) + z_(2) + z_(3)| .

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

Let z_(1),z_(2) and z_(3) be three non-zero complex numbers and z_(1) ne z_(2) . If |{:(abs(z_(1)),abs(z_(2)),abs(z_(3))),(abs(z_(2)),abs(z_(3)),abs(z_(1))),(abs(z_(3)),abs(z_(1)),abs(z_(2))):}|=0 , prove that (i) z_(1),z_(2),z_(3) lie on a circle with the centre at origin. (ii) arg(z_(3)/z_(2))=arg((z_(3)-z_(1))/(z_(2)-z_(1)))^(2) .

If z_(1),z_(2)inC,z_(1)^(2)+z_(2)^(2)inR,z_(1)(z_(1)^(2)-3z_(2)^(2))=2 and z_(2)(3z_(1)^(2)-z_(2)^(2))=11, the value of z_(1)^(2)+z_(2)^(2) is

If |z_(1)| = |z_(2)| = ….. |z_(n)| = 1 , prove that |z_(1) + z_(2) + …….. z_(n)| = |(1)/(z_(1)) + (1)/(z_(2)) + ……….. + (1)/(z_(n))| .

If the complex number z_1 and z_2 be such that arg(z_1)-arg(z_2)=0 , then show that |z_1-z_2|=|z_1|-|z_2| .

If |z_(1) -1|le,|z_(2) -2| le2,|z_(3) - 3|le 3, then find the greatest value of |z_(1) + z_(2) + z_(3)|