Home
Class 12
MATHS
Let alpha and beta be two fixed non-zero...

Let `alpha` and `beta` be two fixed non-zero complex numbers and 'z' a variable complex number. If the lines `alphabarz+baraz+1=0` and `betabarz+barbetaz-1=0` are mutually perpendicular, then

A

`ab+bar(a)bar(b)=0`

B

`ab-bar(a)bar(b)=0`

C

`bar(a)b-abar(b)=0`

D

`abar(b)+bar(a)b=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|11 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise For Session 4|14 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Let z and w be two non-zero complex numbers such that ∣z∣=∣w∣ and arg(z)+arg(w)=π, then z equals

Let alpha and beta be real numbers and z be a complex number. If z^(2)+alphaz+beta=0 has two distinct non-real roots with Re(z)=1, then it is necessary that

If z and w are two non-zero complex numbers such that |zw|=1 and Arg (z) -Arg (w) =pi/2 , then bar z w is equal to :

Let alpha and beta be two distinct complex numbers, such that abs(alpha)=abs(beta) . If real part of alpha is positive and imaginary part of beta is negative, then the complex number (alpha+beta)//(alpha-beta) may be

For any complex number z, the minimum value of |z|+|z-1| is :

Let alpha and beta be non-zero real numbers such that 2 ( cos beta - cos alpha) + cos alpha cos beta =1 . Then which of the following is/are true ?

Solve that equation z^2+|z|=0 , where z is a complex number.

Numbers of complex numbers z, such that abs(z)=1 and abs((z)/bar(z)+bar(z)/(z))=1 is

Represent the complex number z=1+sqrt3i in the polar form.

ARIHANT MATHS-COMPLEX NUMBERS-Exercise (Single Option Correct Type Questions)
  1. The centre of a square ABCD is at z=0, A is z(1). Then, the centroid o...

    Text Solution

    |

  2. Evaluate int(0)^(π/4)(tan^2x -sec^2x)dx

    Text Solution

    |

  3. Let alpha and beta be two fixed non-zero complex numbers and 'z' a var...

    Text Solution

    |

  4. Evaluate int(0)^(1)1/(x^2+1)dx

    Text Solution

    |

  5. Evaluate int1/(x^2+25)dx

    Text Solution

    |

  6. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  7. If the points represented by complex numbers z(1)=a+ib, z(2)=c+id " an...

    Text Solution

    |

  8. Let C and R denote the set of all complex numbers and all real numb...

    Text Solution

    |

  9. Let alpha and beta be two distinct complex numbers, such that abs(alph...

    Text Solution

    |

  10. The complex number z satisfies thc condition |z-25/z|=24. The maximum ...

    Text Solution

    |

  11. The points A,B and C represent the complex numbers z(1),z(2),(1-i)z(1)...

    Text Solution

    |

  12. Find the 6th term of A.P if a=1 , d=2

    Text Solution

    |

  13. Find the 3rd term of A.P if a=1 , d=2

    Text Solution

    |

  14. The centre of circle represented by |z + 1| = 2 |z - 1| in the complex...

    Text Solution

    |

  15. If x=9^(1/3) 9^(1/9) 9^(1/27) ......and if y= 4^(1/3) 4^(-1/9) 4^(1/...

    Text Solution

    |

  16. Find the 5th term of A.P if a=1 , d=2

    Text Solution

    |

  17. Let |Z(r) - r| le r, Aar = 1,2,3….,n. Then |sum(r=1)^(n)z(r)| is less ...

    Text Solution

    |

  18. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |

  19. Find the 7th term of A.P if a=1 , d=2

    Text Solution

    |

  20. Find the 10th term of A.P if a=1 , d=2

    Text Solution

    |