Home
Class 12
MATHS
Sum of four consecutive powers of i(iota...

Sum of four consecutive powers of i(iota) is zero.
i.e.,`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I.`
If `sum_(r=-2)^(95)i^(r)+sum_(r=0)^(50)i^(r!)=a+ib, " where " i=sqrt(-1)`, the unit digit of `a^(2011)+b^(2012)`, is

A

(a)2

B

(b)3

C

(c)5

D

(d)6

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 5|4 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1) , then a+75b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

The value of sum sum_(n=1)^(13)(i^n+i^(n+1)) ,where i=sqrt(-1) equals

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .