Home
Class 12
MATHS
If z1 and z2 are two complex numbers and...

If `z_1` and `z_2` are two complex numbers and `c >0` , then prove that `|z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 7|11 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|42 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 6|2 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If z_1 and z_2 (ne 0) are two complex numbers, prove that : |z_1 z_2|= |z_1||z_2| .

If z_1 and z_2 (ne 0) are two complex numbers, prove that : |z_1/z_2|= (|z_1|)/ (|z_2|), z_2 ne 0 .

For any two complex numbers z_1 and z_2 , prove that Re (z_1 z_2) = Re z_1 Re z_2 - Imz_1 Imz_2

if omega is the nth root of unity and Z_1 , Z_2 are any two complex numbers , then prove that . Sigma_(k=0)^(n-1)| z_1+ omega^k z_2|^2=n{|z_1|^2+|z_2|^2} where n in N

If z_1a n dz_2 are two nonzero complex numbers such that |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to

Consider z_(1)andz_(2) are two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| Statement -1 amp (z_(1))-amp(z_(2))=0 Statement -2 The complex numbers z_(1) and z_(2) are collinear. Check for the above statements.

If the complex number z_1 and z_2 be such that arg(z_1)-arg(z_2)=0 , then show that |z_1-z_2|=|z_1|-|z_2| .

If z_1, z_2 are two complex numbers satisfying the equation |(z_1 +z_2)/(z_1 -z_2)|=1 , then z_1/z_2 is a number which is :