Home
Class 12
MATHS
Identify the correct statement. a. lim(...

Identify the correct statement.
a. `lim_(xtooo)[sum_(r=1)^(n)1/(2^(r))]=1`
b. If `f(x)=(x-1){x},` where `[.]` and `{.}` denotes greatest integer function and fractional part of x respectively, the limit of `f(x)` does not exist at `x=1`
c. `lim_(xto0^(+))[(tanx)/x]=1`
d. `[lim_(xto0^(+))(tanx)/x]=1`

A

`lim_(xtooo)[sum_(r=1)^(n)1/(2^(r))]=1`

B

If `f(x)=(x-1){x},` where `[.]` and `{.}` denotes greatest integer function and fractional part of x respectively, the limit of `f(x)` does not exist at `x=1`

C

`lim_(xto0^(+))[(tanx)/x]=1`

D

`[lim_(xto0^(+))(tanx)/x]=1`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|10 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|38 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

lim_(xtoc)f(x) does not exist when where [.] and {.} denotes greatest integer and fractional part of x

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

Solve lim_(xto0)[(tanx)/x] (where [.] denotes greatest integer function)

Solve lim_(xto0)[(sinx)/x] (where [.] denotes greatest integer function)

Solve lim_(xtooo) [tan^(-1)x] (where [.] denotes greatest integer function)

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Evaluate lim_(xtooo)(1+2/x)^(x)

Solve (i) lim_(xto0)cotx (ii) lim_(xto+oo)cot^(-1)x (where [.] denotes greatest integer function)