Home
Class 12
MATHS
Let alpha, beta in R such that lim(x ->...

Let `alpha, beta in R` such that `lim_(x ->0) (x^2sin(betax))/(alphax-sinx)=1` . Then `6(alpha + beta)` equals

Text Solution

Verified by Experts

The correct Answer is:
7
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|23 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

If alpha, beta be such that pi < alpha- beta < 3 pi . If sin alpha +sin beta= -21/65 and cos alpha + cos beta = -27/65 , then the value of cos frac (alpha-beta)(2) is :

Let alpha and beta be non-zero real numbers such that 2 ( cos beta - cos alpha) + cos alpha cos beta =1 . Then which of the following is/are true ?

int _(alpha)^(beta) 2x dx is equal to

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta then i is

Consider three points : P (- sin (beta- alpha), - cos beta), Q = (cos(beta-alpha), sin beta), and R = (cos (beta - alpha + theta), sin (beta - theta)) , where 0< alpha, beta, theta < pi/4 Then

Find the value of f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)|

If f: R->R ,f(x)=(alphax^2+6x-8)/(alpha+6x-8x^2) is onto then alpha in

Let the line (x-2)/(3)=(y-1)/(-5)=(z+2)/(2) lies in the plane x+3y-alphaz+beta=0 . Then, (alpha, beta) equals

If sin (alpha+beta)=1, sin (alpha-beta)=1/2 , then tan (alpha+ 2beta). tan (2 alpha+beta) is equal to :