Home
Class 12
MATHS
The value of lim(xto0)((1^(x)+2^(x)+3^(x...

The value of `lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x)` is
a. `(n!)^(a//n)`
b. `n!`
c. `a^(n!)`
d. Doesn't exist

A

`(n!)^(a//n)`

B

`n!`

C

`a^(n!)`

D

Doesn't exist

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 4|4 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 5|4 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 2|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)

The value of lim_(xto0){lim_(ntooo)([1^(2)(sinx)^(x)]+[2^(2)(sinx)^(x)]+……….+[n^(2)(sinx)^(x)])/(n^(3))} is (wehre [.] denotes the greatest integer function)

Prove that lim_(x rarr 0) ((1+x)^n-1)/(x)=n .

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is a. 0 b. -log2 c. 1 d. e

Lim_(n to 0) sum_(x + 1)^(n) tan^(-1) (1/(2r^2)) equals

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

Prove that : int_(0)^(1)x(1-x)^(n)dx=1/((n+1)(n+2))

Evaluate int(x^(2)+n(n-1))/((x sin x + n cos x)^(2))dx .

The coefficient of x^r [0lt=rlt=(n-1)] in the expansion of (x+3)^(n-1)+(x+3)^(n-2)(x+2)+(x+3)^(n-3)(x+2)^2+.... +(x+2)^(n-1) is a.^n C_r(3^r-2^n) b.^n C_r(3^(n-r)-2^(n-r)) c. ^n C_r(3^r+2^(n-r)) d. none of these