Home
Class 12
MATHS
The value of lim(n->oo) sum(k=1)^n log(1...

The value of `lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n)`,is

A

`log_(e)(e/4)`

B

`log_(e)(4/e)`

C

`log_(e)4`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 5|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is a. 0 b. -log2 c. 1 d. e

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

The value of sum sum_(n=1)^(13)(i^n+i^(n+1)) ,where i=sqrt(-1) equals

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtb) is

The value of lim_(ntooo)a_(n) when a_(n+1)=sqrt(2+a_(n)), n=1,2,3, ….. is