Home
Class 12
MATHS
Let y(n)(x) = x^(2) + (x^(2))/(1+x^(2))+...

Let `y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x)`. Discuss the continuity of `y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0`

Text Solution

Verified by Experts

The correct Answer is:
`y_(n)(x)` is continuous at x = 0 for all n and y(x) is discontinuous at x = 0
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 7|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 4|7 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = underset(n rarr oo)(lim) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+ . . .+(x^(n))/(n!) , prove that (dy)/(dx)+(x^(n))/(n!)=y

Letf(x) = lim_( n to oo) (x^(n)-sin x^(n))/(x^(n)+sin x^(n)) " for" xgt 0, x ne 1,and f(1)=0 Discuss the continuity at x=1.

In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N ,

Discuss the continuity of f(x)in[0,2],w h e r ef(x)=(lim)_(n->oo)(sin (pix/2))^(2n)

Discuss the continuity of the function f(x)=lim_(xto oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) at x=1.

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(0),a_(1) " and " a_(2) are in A.P , the value of n is

If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.