Home
Class 12
MATHS
If f(x) = {{:((1)/(e^(1//x))",",x ne 0),...

If `f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):}` then

A

0

B

1

C

-1

D

desn't exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 7|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(-1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

If f(x) = {{:(|x-1|([x]-x)",",x ne 1),(0",",x = 1):} , then

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

f(x) = {{:(("tan"((pi)/(4)+x))^(1//x)",",x ne 0),(k",",x = 0):} for what value of k, f(x) is continuous at x = 0 ?

Show that the function defined by f(x) = {{:(x^(2) sin 1//x",",x ne 0),(0",",x = 0):} is differentiable for every value of x, but the derivative is not continuous for x=0

Discuss the continuity of fx) at x =0, when: f(x) = {:{((e^(1//x) -1)/(e^(1//x)+1),xne0),(0,x=0):}

Examine for continuity, the function 'f' defined by f(x) = {:{(e^(1//x), x ne 0),(0,x=0):} at x = 0

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).

Let f(x) = {{:((cos x-e^(x^(2)//2))/(x^(3))",",x ne 0),(0",",x = 0):} , then Statement I f(x) is continuous at x = 0. Statement II lim_(x to 0 )(cos x-e^(x^(2)//2))/(x^(3)) = - (1)/(12)

ARIHANT MATHS-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. Consider function f: R - {-1,1}-> R. f(x)=x/[1-|x|] Then the incorrect...

    Text Solution

    |

  2. Find dy/dx if 2y-e^x=6

    Text Solution

    |

  3. The total number of points of non-differentiability of f(x) = min[|sin...

    Text Solution

    |

  4. The function f(x)=[x]^2-[x^2] is discontinuous at (where [gamma] is t...

    Text Solution

    |

  5. The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not dif...

    Text Solution

    |

  6. If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

    Text Solution

    |

  7. Given f(x) = (e^(x)-cos 2x - x)/(x^(2)),"for x" in R-{0} g(x) = {{:(f...

    Text Solution

    |

  8. The function g(x) = {{:(x+b",",x lt 0),(cos x",",x ge 0):} can be made...

    Text Solution

    |

  9. The graph of function f contains the point P(1, 2) and Q(s, r). The e...

    Text Solution

    |

  10. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  11. If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0, then

    Text Solution

    |

  12. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |

  13. If x dy = y (dx + y dy), y > 0 and y (1) = 1, then y (−3) is equal t...

    Text Solution

    |

  14. Let f(x) be continuous and differentiable function for all reals and f...

    Text Solution

    |

  15. Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) ...

    Text Solution

    |

  16. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  17. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  18. Number of points of non-differentiability of the function g(x) = [x^2...

    Text Solution

    |

  19. Find dy/dx if y= xtanx

    Text Solution

    |

  20. If f((x)/(y))=(f(x))/(f(y)) forall x, y in R, y ne 0 and f'(x) exists ...

    Text Solution

    |