Home
Class 12
MATHS
Number of points of non-differentiabilit...

Number of points of non-differentiability of the function `g(x) = [x^2]{cos^2 4x}+{x^2}[cos^2 4x]+x^2 sin^2 4x+[x^2][cos^2 4x]`+`{x^2}{cos^2 4x}` in `(-50, 50)` where `[x] and {x}` denotes the greatest integer function and fractional part function of x respectively, is equal to :
a.98
b. 99
c. 100
d. 0

A

98

B

99

C

100

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 7|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Domain of differentiability of the function f(x) = |x-2| cos x is

The total number of points of non-differentiability of f(x)=max{sin^2 x,cos^2 x,3/4} in [0,10 pi], is

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes the greatest integer function ), then

If f(x)={'x^2(sgn[x])+{x},0 <= x <= 2' 'sin x+|x-3| ,2 < x< 4 , (where[.] & {.} greatest integer function & fractional part functiopn respectively ), then -

Differentiate the functions : cos x cos 2 x cos 3x

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

Find the integrals of the function: cos^4(2x)

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

Differentiate the functions with respect to x: cos x^3 cdot sin^2 (x^5)

ARIHANT MATHS-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. Consider function f: R - {-1,1}-> R. f(x)=x/[1-|x|] Then the incorrect...

    Text Solution

    |

  2. Find dy/dx if 2y-e^x=6

    Text Solution

    |

  3. The total number of points of non-differentiability of f(x) = min[|sin...

    Text Solution

    |

  4. The function f(x)=[x]^2-[x^2] is discontinuous at (where [gamma] is t...

    Text Solution

    |

  5. The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not dif...

    Text Solution

    |

  6. If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

    Text Solution

    |

  7. Given f(x) = (e^(x)-cos 2x - x)/(x^(2)),"for x" in R-{0} g(x) = {{:(f...

    Text Solution

    |

  8. The function g(x) = {{:(x+b",",x lt 0),(cos x",",x ge 0):} can be made...

    Text Solution

    |

  9. The graph of function f contains the point P(1, 2) and Q(s, r). The e...

    Text Solution

    |

  10. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  11. If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0, then

    Text Solution

    |

  12. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |

  13. If x dy = y (dx + y dy), y > 0 and y (1) = 1, then y (−3) is equal t...

    Text Solution

    |

  14. Let f(x) be continuous and differentiable function for all reals and f...

    Text Solution

    |

  15. Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) ...

    Text Solution

    |

  16. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  17. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  18. Number of points of non-differentiability of the function g(x) = [x^2...

    Text Solution

    |

  19. Find dy/dx if y= xtanx

    Text Solution

    |

  20. If f((x)/(y))=(f(x))/(f(y)) forall x, y in R, y ne 0 and f'(x) exists ...

    Text Solution

    |