Home
Class 12
MATHS
If f((x)/(y))=(f(x))/(f(y)) forall x, y ...

If `f((x)/(y))=(f(x))/(f(y)) forall x, y in R, y ne 0 and f'(x)` exists for all x, `f(2) = 4`. Then, `f(5)` is

A

3

B

5

C

25

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 7|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

Let f((x+y)/(2))= (f(x)+f(y))/(2) for all real x and y . If f'(0) exits and equals -1 and f(0) =1 , then find f(2) .

Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists and f'(0) = - sin alpha , then f{f'(0)} is

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

Let (f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy , for all x,y in R,f(x) is differentiable and f'(0)=1. Let g(x) be a derivable function at x=0 and follows the function rule g((x+y)/(k))=(g(x)+g(y))/(k), k in R,k ne 0,2 and g'(0)=lambda If the graphs of y=f(x) and y=g(x) intersect in coincident points then lambda can take values

Let (f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy , for all x,yinR,f(x) is differentiable and f'(0)=1. Domain of log(f(x)), is

If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne 0, then

Let (f(x+y)-f(x))/(2)=(f(y)-1)/(2)+xy , for all x,yinR,f(x) is differentiable and f'(0)=1. Range of y=log_(3//4)(f(x)) is

ARIHANT MATHS-CONTINUITY AND DIFFERENTIABILITY-Exercise (Single Option Correct Type Questions)
  1. Consider function f: R - {-1,1}-> R. f(x)=x/[1-|x|] Then the incorrect...

    Text Solution

    |

  2. Find dy/dx if 2y-e^x=6

    Text Solution

    |

  3. The total number of points of non-differentiability of f(x) = min[|sin...

    Text Solution

    |

  4. The function f(x)=[x]^2-[x^2] is discontinuous at (where [gamma] is t...

    Text Solution

    |

  5. The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not dif...

    Text Solution

    |

  6. If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

    Text Solution

    |

  7. Given f(x) = (e^(x)-cos 2x - x)/(x^(2)),"for x" in R-{0} g(x) = {{:(f...

    Text Solution

    |

  8. The function g(x) = {{:(x+b",",x lt 0),(cos x",",x ge 0):} can be made...

    Text Solution

    |

  9. The graph of function f contains the point P(1, 2) and Q(s, r). The e...

    Text Solution

    |

  10. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  11. If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0, then

    Text Solution

    |

  12. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |

  13. If x dy = y (dx + y dy), y > 0 and y (1) = 1, then y (−3) is equal t...

    Text Solution

    |

  14. Let f(x) be continuous and differentiable function for all reals and f...

    Text Solution

    |

  15. Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) ...

    Text Solution

    |

  16. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  17. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

    Text Solution

    |

  18. Number of points of non-differentiability of the function g(x) = [x^2...

    Text Solution

    |

  19. Find dy/dx if y= xtanx

    Text Solution

    |

  20. If f((x)/(y))=(f(x))/(f(y)) forall x, y in R, y ne 0 and f'(x) exists ...

    Text Solution

    |