Home
Class 12
MATHS
{:(f(x) = cos x and H(1)(x) = min{f(t), ...

`{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):}`
Which of the following is true for `H_(1) (x)`?

A

Continuous and derivable in `[0, pi]`

B

Continuous but not derivable at `x = (pi)/(2)`

C

Neither continuous nor derivable at `x = (pi)/(2)`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise EXERCISE 5|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise EXERCISE 4|3 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

f(x) = cos x and H(x) = {{:(min{f(t), 0 le t lt x},0 le x le (pi)/(2)) ,( (pi)/(2)-x,(pi)/(2) lt x le 3):} then

Let f(x) = sin x and " g(x)" = {{:(max {f(t)","0 le x le pi},"for", 0 le x le pi),((1-cos x)/(2)",","for",x gt pi):} Then, g(x) is

If f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)), (- cos x, -(pi)/(2)lt x ,le 0):} ,( x-1, 0 lt x le 1),("in"x, x gt1):}

Let f (x) { {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: Find fof.

f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx Consider the functions h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(1)(x) ?

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

Given A = {x: pi/6 le x le pi/3} and f (x) = cos x -x(1 + x), find f (A).

Let f(x) = 1 + 4x - x^(2), AA x in R g(x) = {max {f(t), x le t le (x + 1) 0 le x lt 3 min {(x + 3) 3 le x le 5} Verify continuity of g(x), for all x in [0, 5]