Home
Class 12
MATHS
If y=sec^(-1)(sqrt(1+x^(2))), when -1 lt...

If `y=sec^(-1)(sqrt(1+x^(2)))`, when `-1 lt x lt 1,` then find `(dy)/(dx)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise EXAMPLE|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise SOLVED EXAMPLES|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=m^(2)sec^(-1)x, then find (dy)/(dx) .

if y=sin^(-1)((5x+12sqrt(1-x^(2)))/(13)) then find (dy)/(dx)

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))

Let y = sin^(-1) ((2x)/(1 + x^2)) where 0 lt x lt 1 and 0 lt y lt pi//2 then (dy)/(dx) is equal to

If y=sec^-1(1/(4x^3 -3x)), find dy/dx

If y = tan^-1((sqrt(1+x^2) - 1)/x) , then find dy/dx .

If y = sin^-1((2x)/(1+x^2)) and -1 < x < 1, find dy/dx

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))