Home
Class 12
MATHS
If x=e^(-t^(2)), y=tan^(-1)(2t+1), then ...

If `x=e^(-t^(2)), y=tan^(-1)(2t+1)`, then `(dy)/(dx)=`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise EXAMPLE|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise SOLVED EXAMPLES|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=e^((tan^(-1)x) then find (dy)/(dx)

If y=(tan^(-1)x)^(2) then (dy)/(dx) is equal to:

If x=(1-t^2)/(1+t^2) , y=(2t)/(1+t^2) , find (dy)/(dx) at x=2.

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that (dy)/(dx)=(1)/(x^(3)y) .

If x=sin^(-1)((2t)/(1+t^2)) and y= tan^(-1)((2t)/(1-t^2)),t > 1 . Prove that dy/dx=-1

If x = log t^2 , y = log t^3 , then (dy)/(dx) is