Home
Class 12
MATHS
If x=a(cost+1/2logtan^2t) and y=asint th...

If `x=a(cost+1/2logtan^2t)` and `y=asint` then find `(dy)/(dx)` at `t=pi/4`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise EXAMPLE|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise SOLVED EXAMPLES|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If x = a(cost + t sint) and y = a(sint - tcost) , find (d^2y)/dx^2

If x=a(t-sint)andy=(1-cost), then find (d^(2)y)/(dx^(2)) .

If x=cost(3-2cos^(2)t) and y=sint(3-2sin^(2)t) , find the value of (dy)/(dx) at t=(pi)/(4) .

If x=cost " and " y=sint ,"prove : "(dy)/(dx)=1/(sqrt(3))"at " t=(2pi)/3

Find dy/dx , when x = a(cos t + log |tan t/2|) andy = a sin t, 0 < t < pi/2

If x = sin t, y = cos t, find dy/dx

If x = a { cos t + log|tan t/2|} and y = a sin t, 0 < t < pi/2 , find (d^2y)/(dx^2)

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

Find dy/dx if y=(pi)/2-sinx