Home
Class 12
MATHS
Let f be twice differentiable function, ...

Let f be twice differentiable function, such that `f'(x) = - f(x) and f'(x) = g(x), h(x) = [f(x)]^(2) + [g(x)]^(2)`. Find h(10), if h(5) = 11

A

0

B

9

C

11

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise EXAMPLE|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise SOLVED EXAMPLES|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let f be a twice differentiable function such that f^(prime prime)(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let f (x) be twice differentiable function such that f'' (x) lt 0 in [0,2]. Then :

If f is twice differentiable such that f''(x)=-f(x), f'(x)=g(x), h'(x)=[f(x)]^(2)+[g(x)]^(2) and h(0)=2, h(1)=4, then the equation y=h(x) represents.

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

Let f: (-1,1) rarr R be a differentiable function with f(0) = -1 and f'(0) = 1 let g(x) =[f(2f(x)+2)]^2 , then g'(0) =

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Let y=f(x) be a differentiable function such that f(−1)=2,f(2)=−1 and f(5)=3 If the equation f (x)=2f(x) has real root. Then find f(x)

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+ (g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(x))=x for all x in R . Then, h'(1) equals.