Home
Class 12
MATHS
Suppose the function f(x) satisfies the ...

Suppose the function `f(x)` satisfies the relation `f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R` and is differentiable for all `xdot` Statement 1: If `f^(prime)(2)=a ,t h e nf^(prime)(-2)=a` Statement 2: `f(x)` is an odd function.

A

Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I

B

Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I

C

Statement I is correct but Statement II is incorrect

D

Statement II is correct but Statement I is incorrect.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Differentiation Exercise 5:|2 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|62 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If f (x) satisfies the relation : 2 f(x) +f (1 -x) = x^2 for all real x, then f (x) is :

If y=f(x) is an odd differentiable function defined on (-oo,oo) such that f^(prime)(3)=-2,t h e n|f^(prime)(-3)| equals_________.

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2, then

A function f(x) which satisfies the relation f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,

A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y) for all x y in R, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2 , then prove that f' = 2f(x) .

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

Statement 1: If differentiable function f(x) satisfies the relation f(x)+f(x-2)=0AAx in R , and if (d/(dx)f(x))_(x=a)=b ,t h e n(d/(dx)f(x))_(x=a+4000)=b . Statement 2: f(x) is a periodic function with period 4.

Let the function f satisfies f(x).f ′ (−x)=f(−x).f ′ (x) for all x and f(0)=3 The value of f(x).f(-x) for all x is