Home
Class 12
MATHS
Equation x^(n)-1=0, ngt1, n in N," has r...

Equation `x^(n)-1=0, ngt1, n in N," has roots "1,a_(1),a_(2),…,a_(n-1).`
The value of `(1-a_(1))(1-a_(2))…(1-a_(n-1))` is

A

`(n^(2))/(2)`

B

n

C

`(-1)^(n)n`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Differentiation Exercise 5:|2 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Equation x^(n)-1=0,ngt1,ninN, has roots 1,a_(1),a_(2),...,a_(n),. The value of underset(r=2)overset(n)sum(1)/(2-a_(r)), is

Equation x^(n)-1=0,ngt1,ninN, has roots 1,a_(1),a_(2),...,a_(n),. The value of underset(r=2)overset(n)sum(1)/(2-a_(r)), is

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a_(1),a_(2),a_(3) are in AP, then show that f'(a_(1)),f'(a_(2)),f'(a_(3)) are in AP.

The number of functions from f:{a_(1),a_(2),...,a_(10)} rarr {b_(1),b_(2),...,b_(5)} is

|{:(x,e^(x-1),(x-1)^(3)),(x-lnx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,cos^(2)x):}|=a_(0)+a_(1)(x-1)+a_(2)(x-1)^(2)cdots The value of cos^(-1) (a_(1)) is:

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

Let us consider the binomial expansion (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) where a_(4) , a_(5) "and " a_(6) are in AP , ( n lt 10 ). Consider another binomial expansion of A = root (3)(2) + (root(4) (3))^(13n) , the expansion of A contains some rational terms T_(a1),T_(a2),T_(a3),...,T_(am) (a_(1) lt a_(2) lt a_(3) lt ...lt a_(m)) The value of a_(m) is