Home
Class 12
MATHS
If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t...

If `x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)),` then `((dy)/(dx))_((1.1))` is…………

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Differentiation Exercise 5:|2 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that (dy)/(dx)=(1)/(x^(3)y) .

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x^2 + y^2 = t + 1/t and x^4 + y^4 = t^2 + 1/t^2 , then show that dy/dx = -1/(x^3y)

If x=(1-t^2)/(1+t^2) , y=(2t)/(1+t^2) , find (dy)/(dx) at x=2.

If x=sin^(-1)((2t)/(1+t^2)) and y= tan^(-1)((2t)/(1-t^2)),t > 1 . Prove that dy/dx=-1

If x = (1 - t^2)/(1 + t^2) and y = (2t)/(1+t^2) , then show that (dy/dx) + x/y =0

If (x=a sin (2t)(1+cos(2t)) and (y=b cos (2t) (1- cos(2t)) , then show that ((dy/dx)_(t=pi/4) =b/a) .

if x = t + (1)/(t), y = t - 1/t find dy/dx

If x = log t^2 , y = log t^3 , then (dy)/(dx) is