Home
Class 12
MATHS
If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2)...

If `x^2+y^2=t-1/t` and `x^4+y^4=t^2+1/(t^2)` , then prove that `(dy)/(dx)=1/(x^3y)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If x^2 + y^2 = t + 1/t and x^4 + y^4 = t^2 + 1/t^2 , then show that dy/dx = -1/(x^3y)

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that (dy)/(dx)=(1)/(x^(3)y) .

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=f(t) and y=phi (t) then to prove that (dy)/(dx)=((dy)/(dt))/((dx)/(dt))=(phi'(t))/(f'(t)) .

If x = (1 - t^2)/(1 + t^2) and y = (2t)/(1+t^2) , then show that (dy/dx) + x/y =0

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If y = sqrt(1+sqrt(1+x^4)) , prove that y(y^2-1)dy/dx = x^3

If x=f(t) and y=phi(t), prove that (d^2y)/(dx^2)=(f_1phi_2-f_2phi_1)/(f_1^3) where suffixes denote differentiation w.r.t.t.