Home
Class 12
MATHS
If x=sin^(-1)((2t)/(1+t^2)) and y=tan^(-...

If `x=sin^(-1)((2t)/(1+t^2))` and y=`tan^(-1)((2t)/(1-t^2)),t > 1`. Prove that dy/dx=-1

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 6|19 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If sinx = (2t)/(1+t^2), tan y = (2t)/(1-t^2) , find dy/dx

If x = (1 - t^2)/(1 + t^2) and y = (2t)/(1+t^2) , then show that (dy/dx) + x/y =0

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that (dy)/(dx)=(1)/(x^(3)y) .

Differentiate tan^(-1)((2x)/(1 - x^2)) w.r.t. sin^(-1)((2x)/(1 + x^2))

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If (x=a sin (2t)(1+cos(2t)) and (y=b cos (2t) (1- cos(2t)) , then show that ((dy/dx)_(t=pi/4) =b/a) .

Differentiate sin^(-1)((2x)/(1 + x^2)) w.r.t. tan^(-1) x .

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x=(1-t^2)/(1+t^2) , y=(2t)/(1+t^2) , find (dy)/(dx) at x=2.

Find dy/dx when x = 2t/(1+ t^2) and y = (1- t^2)/(1+ t^2)