Home
Class 12
MATHS
f(x)=cot^(2)x*cos^(2)x, and g(x)=cot^(2...

`f(x)=cot^(2)x*cos^(2)x`, and `g(x)=cot^(2)x-cos^(2)x` prove that `f(x)=g(x)`

Text Solution

Verified by Experts

The correct Answer is:
Identical
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 10|5 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 8|8 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following pairs of function are identical? a. f(x)=e^(In sec^(-1)x) " and " g(x)=sec^(-1)x b. f(x)=tan(tan^(-1)x) " and " g(x)=cot(cot^(-1)x) c. f(x)=sgn(x) and g(x)=sgn(sgn(x)) d. f(x)=cot^(2)*cos^(2)x " and " g(x)=cot^(2)x-cos^(2)x

f(x)=e^(lncot), g(x)=cot^(- 1)x

Let f(x)= |{:(secx,cosx, sec^2x+cotx cosecx), (cos^2x, cos^2x, cosec^2x),(1,cos^2x, cos^2x):}| Prove that int_0^(pi//2)f(x)dx=-pi/4-8/(15) .

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then a. f'(1)= 4 + f'(2) b. g'(2) = 8 + g'(1) c. g''(2) + f''(3) = 4 d. all of these

Find f' (x) when f(x) = 2^(cos^2x)

Consider two functions f(x)=1+e^(cot^(2)x) " and " g(x)=sqrt(2abs(sinx)-1)+(1-cos2x)/(1+sin^(4)x). bb"Statement I" The solutions of the equation f(x)=g(x) is given by x=(2n+1)pi/2, forall "n" in I. bb"Statement II" If f(x) ge k " and " g(x) le k (where k in R), then solutions of the equation f(x)=g(x) is the solution corresponding to the equation f(x)=k.

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

f(x)=sgn(cot^(- 1)x),g(x)=sgn(x^2-4x+5)

Let f(x)=x^2+xg'(1)+g''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function h(x) is increasing, is