Home
Class 12
MATHS
Let f(x)={{:(x+1",",x le 1),(2x+1",", 1 ...

Let `f(x)={{:(x+1",",x le 1),(2x+1",", 1 lt x le 2):}`
`"and "g(x)={{:(x^(2)",",-1 le x lt 2),(x+2",", 2 le x le 3):}`
Find (fog).

Text Solution

Verified by Experts

The correct Answer is:
gof=`{(x+1)^(2), -2 le x le 1}`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 12|4 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 9|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f (x) { {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: Find fof.

Let f(x)={(x+1",", x lt1),(2x+1",",1lt x le 2):}" and " g(x)={(x^(3)",", -1 le x lt 2),(x+2",",2 le x le 3):} find fog(x) .

Let f and g be real valued functions defined as f(x)={{:(7x^(2)+x-8",",xle 1),(4x+5",",1lt x le 7),(8x+3",",x gt7):} " " g(x)={{:(|x|",",xlt -3),(0",",-3le x lt 2),(x^(2)+4",",xge 2):} The value of gof (0) + fog (-3) is a. -8 b. 0 c. 8 d. 16

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then a. g(x) has local maxima at x=1+log_(e)2 and local minima at x=e b. f(x) has local maxima at x=1 and local minima at x=2 c. g(x) has no local minima d. f(x) has no local maxima

|(x-3)/(x^(2)-4)|le 1.

f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):} and g(x)=sinx. Find h(x)=f(abs(g(x)))+abs(f(g(x))).

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

f(x)=abs(x-1)+abs(x-2), -1 le x le 3 . Find the range of f(x).

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",1 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .