Home
Class 12
MATHS
bb"Statement I" The equation f(x)=4x^(5)...

`bb"Statement I"` The equation `f(x)=4x^(5)+20x-9=0` has only one real root.
`bb"Statement II" f'(x)=20x^(4)+20=0` has no real root.

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|25 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Statement 1 The equation a^(x)+b^(x)+c^(x)-d^(x)=0 has only real root, if agtbgtcgtd . Statement 2 If f(x) is either strictly increasing or decreasing function, then f(x)=0 has only real root.

Statement I :The function f(x)=(x^(3)+3x-4)(x^(2)+4x-5) has local extremum at x=1. Statement II :f(x) is continuos and differentiable and f'(1)=0.

Consider two functions f(x)=1+e^(cot^(2)x) " and " g(x)=sqrt(2abs(sinx)-1)+(1-cos2x)/(1+sin^(4)x). bb"Statement I" The solutions of the equation f(x)=g(x) is given by x=(2n+1)pi/2, forall "n" in I. bb"Statement II" If f(x) ge k " and " g(x) le k (where k in R), then solutions of the equation f(x)=g(x) is the solution corresponding to the equation f(x)=k.

bb"Statement I" The function f(x) =xsinx and f'(x)=xcosx+sinx are both non-periodic. bb"Statement II" The derivative of differentiable functions (non-periodic) is non-periodic function.

Let f(x)=ln(2+x)-(2x+2)/(x) . Statement I The function f(x) =0 has a unique solution in the domain of f(x). Statement II f(x) is continuous in [a, b] and is strictly monotonic in (a, b), then f has a unique root in (a, b).

Show that the equation x^(3)+2x^(2)+x+5=0 has only one real root, such that [alpha]=-3 , where [x] denotes the integral point of x

If the equation x^(3) +px +q =0 has three real roots then show that 4p^(3)+ 27q^(2) lt 0 .

Statement I The number of solution of the equation |sin x|=|x| is only one. Statement II |sin x| ge 0 AA x in R .

Let a in R and f : R rarr R be given by f(x)=x^(5)-5x+a , then (a) f(x)=0 has three real roots if a gt 4 (b) f(x)=0 has only one real root if a gt 4 (c) f(x)=0 has three real roots if a lt -4 (d) f(x)=0 has three real roots if -4 lt a lt 4

bb"Statement I" The period of f(x)=2cos""1/3(x-pi)+4sin""1/3(x-pi) " is " 3pi . bb"Statement II" If T is the period of f(x), then the period of f(ax+b) is T/abs(a) .