Home
Class 12
MATHS
Let f(x)=x^2 + 3x-3,x leq 0. If n point...

Let `f(x)=x^2 + 3x-3,x leq 0`. If n points `x_1, x_2, x_3,.....,x_n` are so chosen on the x-axis such that
(1)`1/n sumf^-1(x_i)=f(1/n sum_( i=1 )^nx_i)`
(2) `sum_(i=1) ^ n f^-1(x_i)=sum_(i=1) ^ n x_i`where `f^-1` denotes the inverse of f, Then the AM of xi's is
a)1
b)2
c)3
d)4

Text Solution

Verified by Experts

The correct Answer is:
`1/n sum_(i=1)^(n)x_(i)=1`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise FUNCTION EXERCISE 8:Questions Asked in Previous 10 Years Exams|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|31 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Prove that identity : sum_(i=1)^(n) (x_i-bar x)^2 = sum_(i=1)^(n) x_i^2-n bar x^2= sum_(i=1)^(n) x_i^2 -(sum_(i=1)^(n) x_i)^2/n .

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x).

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

If x_1,x_2,………….x_p are p values of variabled x such that underset(i=1)overset(p)sum(x_i-2)=110 and underset(i=1)overset(p)sum(x_i-5)=20 find the value of p and the mean.

If barx represents the mean of n observations x_1, x_2,…….,x_n , then value of sum_(i=1)^n (x_1-barx) is :

If the normals at the four points (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 are concurrent, then the value of (sum_(i=1)^4x_i)(sum_(i=1)^(4)1/x_i)

If f is a function satisfying f(x+y)= f(x) f(y) for all x,y in N such that f(1)=3 and sum_(x=1)^n f(x)=120 , find the value of n.

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0