Home
Class 12
MATHS
Consider the function f(x)={{:(x=[x]-(1)...

Consider the function `f(x)={{:(x=[x]-(1)/(2)","," if "x in I),(0","," if "x in I):}` Where `[.]` denotes greatest integer function and I is the set of integers, then `g(x)=max{x^(2), f(x),|x|},-2le x le2` is defined as

Text Solution

Verified by Experts

The correct Answer is:
`g(x)={{:(x^(2)",", -2 le x le -1),(-x",", -1 le x le -1//4),(x+1/2",", -1/4 le x le 0),(x",", 0 le x le 1),(x^(2)",", 1 le x le 2):}`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise FUNCTION EXERCISE 8:Questions Asked in Previous 10 Years Exams|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|31 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:(x-[x]-(1)/(2),x !in),(0, "x inI):} where [.] denotes the fractional integral function and I is the set of integers. Then find g(x)max.[x^(2),f(x),|x|},-2lexle2.

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Let [] donots the greatest integer function and f (x)= [tan ^(2) x], then

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

Determine whether function, f(x)=(-1)^([x]) is even, odd or neither of two (where [*] denotes the greatest integer function).