Home
Class 12
MATHS
If f is an odd function, then evaluate ...

If `f` is an odd function, then evaluate `I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))`

A

0

B

`f(cosx)+f(sin x)`

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

int_(a)^(b)f(x)dx=F(b)-F(a) .

Prove that if f is an odd function, then int_-a^a f(x)dx =0 . Use it to evaluate int_-1^1 log((2+x)/(2-x)) dx

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , then evaluate int_(sintheta)^(cos e ctheta)f(x)dx

Let f: RvecR a n d g: RvecR be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)] dx is