Home
Class 12
MATHS
f,g, h , are continuous in [0, a],f(a-x)...

`f,g, h ,` are continuous in `[0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5.` Then `int_0^af(x)g(x)h(x)dx=`

A

0

B

1

C

a

D

-a

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f and g are continuous functions in [0, 1] satisfying f(x) = f(a-x) and g(x) + g(a-x) = a , then int_(0)^(a)f(x)* g(x)dx is equal to

If f and g are continuous functions on [0,a] satisfying f(x)=(a-x) and g(x)+g(a-x)=2 , then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx .

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If int f(x)dx=g(X)+C then

Let g(x)=f(x)+f(1-x) and f''(x)<0 , when x in (0,1) . Then f(x) is

If f(x) , g(x) and h(x) are polynomials of degree 2 , then : phi (x) = |(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x))| is a polynomial of degree :

If f is twice differentiable such that f''(x)=-f(x), f'(x)=g(x), h'(x)=[f(x)]^(2)+[g(x)]^(2) and h(0)=2, h(1)=4, then the equation y=h(x) represents.

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=sqrt(x^(2)+1),g(x)=(x+1)/(x^(2)+1) and h(x)=2x-3 , then find f'[h'{g'(x)}] .

Let f,g and h be real-valued functions defined on the interval [0,1] by f(x)=e^(x^2)+e^(-x^2) , g(x)=x e^(x^2)+e^(-x^2) and h(x)=x^2 e^(x^2)+e^(-x^2) . if a,b and c denote respectively, the absolute maximum of f,g and h on [0,1] then