Home
Class 12
MATHS
Show that int(0)^(pi)xf(sinx)dx=(pi)/2 i...

Show that `int_(0)^(pi)xf(sinx)dx=(pi)/2 int_(0)^(pi)"fr"(sinx)dx`.

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Show that : int_(0)^(pi)x/(1+sinx)dx=pi

Show that (a) int_(0)^(pi/2) sin x dx=1 (b) int_(0)^(pi) cosx dx=0

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Evaluate int_(0)^(pi/2) sinx dx

Evaluate int_(0)^(pi//2)(sinx)/(sinx)dx

Evaluate int_(0)^(pi/2) cosx dx

Using properties of definite integrals, show that int_(0)^(pi//2)(xdx)/(sinx+cosx)=(pi)/(2sqrt(2))log(sqrt(2)+1)

Show that : int_(0)^(pi/2)sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx=pi/4 .