Home
Class 12
MATHS
If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f...

If `f(x) =(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx`, and `I_2=int_(f(-a))^(f(a)) g(x(1-x))dx,` then the value of `(I_2)/(I_1)` is

A

1

B

-3

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=e^(1-x) then f(x) is

If f(x)=x.e^(x(1-x), then f(x) is

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

Let f be a positive function. Let I_(1)=int_(1-k)^(k)x f[x(1-x)]dx , I_(2)=int_(1-k)^(k)f[x(1-x)]dx , where 2k-1gt0 . Then (I_(1))/(I_(2)) is

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)