Home
Class 12
MATHS
The value of int(0)^(pi//2)(log(1+x si...

The value of
`int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0` is equal to

A

`(1)/(pi)(sqrt(1+x-1))`

B

`sqrtpi(sqrt(1+x-1))`

C

`pi(sqrt(1+x-1))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If U_(n)=int_(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of zero, then The value of int_(0)^(pi//2)(sin^(2)n theta)/(sin^(2) theta) d theta is

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

The value of I(n) =int_0^pi(sin ^2n theta)/(sin^2theta) d theta is (AA n in N)

Evaluate int_(0)^(pi//2) sqrt(sin theta) cos^(5) theta d theta .

Evaluate int_(0)^(pi//2) sqrt(sin theta) cos^(5) theta d theta .

Evaluate int_(0)^(pi//4) log (1+tan theta)d theta

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

Evaluate: underset0overset(2pi)int (sin^2theta)/(a-bcostheta)d theta, agtbgt0

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Find sin 2 theta when sin theta + cos theta= 1 .