Home
Class 12
MATHS
Suppose I1=int0^(pi/2)cos(pisin^2x)dx an...

Suppose `I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx`, then

A

(a) `I_(1)=0`

B

(b) `I_(2)+I_(3)=0`

C

(c) `I_(1)+I_(2)+I_(3)=0`

D

(d) `I_(2)=I_(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) cos^(2) x dx

int_(0)^((pi)/(2)) cos^(2) dx is

int_(0)^(pi) cos 2x . Log (sinx) dx

Evaluate : int_0^(pi/2) log sin x dx .

Evaluate int_(0)^(pi/2) sinx dx

Evaluate int_0^(pi//2) logcosx dx

Evaluate int_0^(pi//2) log|sinx| dx

Evaluate int_0^(pi//2) (dx)/(3+cos^2x)

Evaluate int_0^(pi//2) (dx)/(2+cos^2x)

Show that (a) int_(0)^(pi/2) sin x dx=1 (b) int_(0)^(pi) cosx dx=0