Home
Class 12
MATHS
Let L= lim(nrarr infty) int(a)^(infty)(n...

Let `L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2))`, where `a in R,` then L can be

A

`pi`

B

`pi//2`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|17 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(infty)(lnxdx)/(x^(2)+2x+4)

lim_(n rarr infty) sum_(k=1)^(n) (k)/(n^(2)+k^(2)),x gt 0 is equal to

Let lim_(T rarr infty) (1)/(T) int_(0)^(T) ( sin x + sin ax)^(2) dx =L , then

Evaluate int_(0)^(infty) e^(-x^2)x^(3)dx .

Show that lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2

Evaluate int _(0)^(infty) (tan^(-1)ax-tan^(-1)x)/(x)dx , where a is a parameter.

lim_(x rarr infty) (x^(3) int_(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) dt) is equal to

Evaluate int_(0)^(infty)e^(-x) sin^(n) x dx, if n is an even integer.

Evaluate l_(n)= int (dx)/((x^(2)+a^(2))^(n)) .

If A= [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R ) a. a zero matrix b. an identity matrix c. [[0,1],[-1,0]] d. [[0,1],[0,-1]]