Home
Class 12
MATHS
The function f(x) satisfying the equati...

The function `f(x) ` satisfying the equation `f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0`

A

`f(x)=C.e^((2-sqrt3)x`

B

`f(x)=C.e^((2+sqrt3)x`

C

`f(x)=C.e^((sqrt3-2)x`

D

`f(x)=C.e^(-(2+sqrt3)x`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|9 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|13 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,

Let f(x) be a real valued function satisfying the relation f(x/y) = f(x) - f(y) and lim_(x rarr 0) f(1+x)/x = 3. The area bounded by the curve y = f(x), y-axis and the line y = 3 is equal to

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y) for all x y in R, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2 , then prove that f' = 2f(x) .

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of underset(x to -oo)(lim)f(x) is

A function f(x) which satisfies the relation f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

Suppose a function f(x) satisfies the following conditions f(x+y) = (f(x) + f(y))/(1+f(x)f(y)), AA x in R, y and f'(0) = "1. Also," -1 The value of the limit l t_(xto oo) (f(x))^(x) is:

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

If f is an even function, then find the realvalues of x satisfying the equation f(x)=f((x+1)/(x+2))

A function y-f (x) satisfies the differential equation f (x) sin 2x - cos x+(1+ sin ^(2)x) f'(x) =0 with f (0) =0. The value of f ((pi)/(6)) equals to :