Home
Class 12
MATHS
Let y=f(x) satisfies the equation f(x)...

Let y=f(x) satisfies the equation
`f(x)=(e^(-e)+e^(x)) cosx-2x-int_(0)^(x)(x-t)f'(t)dt.`
The value of f'(0)+f''(0)equals to

A

`e^(-x)(cosx-sinx)+(e^(x))/(5)(3cos+sinx)+(2)/(5)e^(-x)`

B

`e^(-x)(cosx+sinx)+(e^(x))/(5)(3cos-sinx)-(2)/(5)e^(-x)`

C

`e^(-x)(cosx-sinx)+(e^(x))/(5)(3cos-sinx)+(2)/(5)e^(-x)`

D

`e^(-x)(cosx+sinx)+(e^(x))/(5)(3cos-sinx)-(2)/(5)e^(-x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Differential Equations Exerise 5 :|3 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|9 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation

A function f(x) which satisfies the relation f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

Suppose f(x) and g(x) are two continuous function defined for 0 le xle 1 . Given , f(x)= int_(0)^(1) e^(x+1) . F(t) dt and g(x)=int _(0)^(1) e^(x+t). G(t) dt +x , The value of f(1) equals

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

A function y-f (x) satisfies the differential equation f (x) sin 2x - cos x+(1+ sin ^(2)x) f'(x) =0 with f (0) =0. The value of f ((pi)/(6)) equals to :

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

Prove that int_(0)^(x)e^(xt)e^(-t^(2))dt=e^(x^(2)/4)int_(0)^(x)e^(-t^(2)/4)dt .

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f : R^(+) rarr R satisfies the functional equation f(xy) = e^(xy - x - y) {e^(y) f(x) + e^(x) f(y)}, AA x, y in R^(+) . If f'(1) = e, determine f(x).

Let f (x)= (e ^(tan x) -e ^(x) +ln (sec x+ tan x)-x)/(tan x-x) be a continous function at x=0. The value of f (0) equals: