Home
Class 12
MATHS
Let y(x) be a function satisfying (d^(2)...

Let `y(x)` be a function satisfying `(d^(2)y)/(dx^(2))-(dy)/(dx)+e^(2x)=0`,` y(0)= 2`and `y^(')(0)=1`. If maximum value of `y(x)` is `y(alpha)`, then integral part of `2alpha` is……………..

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|4 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Differential Equations Exerise 7 :|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Differential Equations Exerise 5 :|3 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

If y=x^(x) , prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0 .

If =3e^(2x)+2e^(3x) then prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .

If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0 .